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Properties of the Shapiro steps in the ac driven Frenkel-Kontorova model
with deformable substrate potential
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Properties of the dynamical-mode-locking phenomena are studied in the ac driven overdamped Frenkel-
Kontorova model with deformable substrate potential. Appearance of very large subharmonic steps due to
deformation of the substrate potential significantly influences the stability and existence of harmonic steps.
Strong correlation among harmonic and subharmonic steps has been observed in which the larger the width of
half-integer steps, the smaller that of harmonic steps. Amplitude dependence of harmonic steps significantly
changes with the deformation of the potential where deviation from the well-known Bessel-like oscillations
appears. Strong influence of the frequency of the ac driving force on the appearance and size of subharmonic

steps has been observed.
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I. INTRODUCTION

Since the first observation of dynamical-mode-locking
phenomena, stability and properties of resonant solutions or
Shapiro steps have been matter of many theoretical and
experimental studies in systems such as charge-density wave
conductors [1-3] and systems of Josephson-junction arrays
biased by external currents [4-8]. In order to gain an insight
into physics of these complex macroscopic many-body
systems with competing interactions, the attention has
been always focused on simple many-body models. Among
these models, the dissipative (overdamped) Frenkel-
Kontorova (FK) model is one of the simplest but still
complex enough that can capture the essence of many physi-
cal phenomena.

The standard Frenkel-Kontorova (FK) model represents a
chain of harmonically interacting particles subjected to a
sinusoidal substrate potential [9]. It describes various com-
mensurate and incommensurate structures that when sub-
jected under an external driving force show rich dynamical
behavior. In the presence of an external dc+ac driving force,
the dynamics is characterized by the appearance of the stair-
case macroscopic response or the Shapiro steps in the re-

sponse function v (F) of the system [10-12]. These steps are
due to the dynamical mode-locking of the internal frequency
that comes from the motion of particles over the periodic
substrate potential with the frequency of an external ac force.
Although the standard FK model has been very saucerful in
the explanations of many phenomena related to the Shapiro
steps such as amplitude or frequency dependence and the
noise effects [13-16], it could not be used for the studies of
any phenomena related to the behavior of subharmonic steps.
It is well known that in the standard FK model, for commen-
surate structures with integer values of winding number only
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harmonic steps exist [17]. In the commensurate structures
with noninteger values of winding number, besides har-
monic, subharmonic steps appear, however their size is so
small that they are invisible on the regular plot of the re-
sponse function what makes analysis of their properties very
difficult [10,11].

Contrary to the standard FK model, the large subharmonic
steps can appear in the presence of the deformable substrate
potential [18]. In the real physical systems, the shape of the
substrate potential can deviate from the standard (sinusoidal)
one, and this may affect strongly the transport properties of
the system. In the physical situations, such as charge-density
waves, Josephson junctions, or crystals with dislocations, ap-
plication of standard FK model could be very restricted, and
it is hard to believe that real physical systems could be “ex-
actly” described by standard models or by employing pertur-
bation methods. Introducing a family of nonlinear periodic
deformable potentials, Remoissent and Peyrard [19] obtained
in a control manner by an adequate choice of parameters rich
variety of deformable potentials related to the physical sys-
tems such as Josephson junctions, charge-density wave con-
densates, and crystals with dislocations (these deformable
potentials allow the modeling of many specific physical situ-
ations without employing perturbation methods). They have
shown that the shape of the substrate potential was of great
importance for the modeling of discrete systems [19].

In the present paper we will examine how the deformation
of the potential influences the dynamical-mode-locking phe-
nomena in the (dc+ac)-driven overdamped FK model par-
ticularly focusing on the amplitude dependence of the Sha-
piro steps. In order to select a type of deformable potential
for our studies, our focus was on these deformable potentials
that satisfy following requirements: it is necessary that the
new form of potential refers to the same physical systems
(charge-density wave systems and the system of Josephson
junction arrays) as the overdamped FK model, that it is tun-
able, and that in the case of zero deformations, it reduces to
the standard (sinusoidal) form that has been studied in our
previous works [13-16].
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FIG. 1. Asymmetric deformable potential for K=4 and different
values of the shape parameters r.

The obtained results have shown that the deformation of
the potential strongly influences the stability and properties
of the Shapiro steps. Strong correlation between the size of
harmonic steps and the appearance of large half-integer steps
has been observed. Appearance of subharmonic steps with
the deformation of the potential changes the amplitude de-
pendence of harmonic steps. Although the step width still has
oscillatory dependence of amplitude, the form of oscillations
strongly deviate from the well-known Bessel-like form.
Strong influence of the ac frequency on the appearance of
subharmonic steps and the amplitude dependence has been
observed.

The paper is organized as follows. The model is intro-
duced in Sec. II. Simulation results are presented and ana-
lyzed in Sec. III. Finally, Sec. IV concludes the paper.

II. MODEL

We consider the dissipative (overdamped) dynamics of
series of coupled harmonics oscillators u; driven by dc and
ac forces:

F(1)=F + F,, cos(2myt), (1)

where F is the dc force while F,. and 27y, are the amplitude
and frequency of the ac force, respectively. The equation of
motion is

Uy =gy + 1wy = 2= V' (u) + F(2), (2)

N N
where [=—75,...,5.

In order to include deformation of the potential, in the Eq.
(2), we will replace sinusoidal potential V(u;) that has been
studied previously [10-16] with the one from the family of
parametrized deformable periodic potentials, the asymmetric
deformable potential (ASDP) [19]:

K (1-r)1-cos(2mu)]
(2m)? [1+r*+2rcos(mu)]?’

V(u) = 3)

where K is the pinning strength and r is the shape parameter
(-1<r<1). In Fig. 1, the ASDP is presented for different
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values of the shape parameter r.

This potential refers to the same physical systems as the
overdamped FK model [19], and by an appropriate choice of
the shape parameter, it can be tuned in a controlled manner
from the simply sinusoidal (standard) potential for r=0 to an
asymmetric periodic one for 0<<|r|<1 with a constant bar-
rier height and two inequivalent successive wells with a flat
and sharp bottom, respectively. The position u,, of the poten-
tial barrier is determined by the relation cos(mu,)=2r/(1
+7?). Precisely, here the asymmetry means that the pining in
the two successive potential minima is different. This type of
potential is considered as a natural way to describe lattice
with diatomic basis or dual lattices by generalizing the stan-
dard model that assumes simple sinusoidal potential [19]. In
this model, particles during their motion interpolate between
two media with different physical properties. The model has
two energetically equivalent ground states, but these two
states are not physically equivalent, in particular, they do not
have the same dynamical properties [19]. The pinning of the
particles strongly depends of the shape of potential well, and
as it was shown previously [19], in the potential with sharp
maxima and wide minima, even the very large kinks can be
pinned.

When the system is driven by homogenous periodic force,
the competition between two frequency scales (the frequency
v, of the external periodic force and the characteristic fre-
quency of the motion over the periodic substrate potential

driven by the average force F) can result in the appearance of
the synchronization phenomena (resonance). The ac force
induces additional polarization energy into the system that is
different from zero (less than zero) only when the velocity
reaches the resonant values [10]:

iw+j

U= B (4)

m

where i,j and m are integers (m=1 for harmonic and m> 1
for subharmonic steps). In the same time, the average pin-
ning force will also be different from zero, and the system
will get locked since the average pinning energy of the
locked state (on the step) is lower than of the unlocked state.

As F increases, the particles will stay locked until the pin-

ning force can cancel the increase in F.

Equations (2) have been integrated using the fourth-order
Runge-Kutta method with the periodic boundary conditions
for commensurate structure with the interparticle average
distance (winding number) w:% (w is rational for the com-
mensurate and irrational for the incommensurate structures).
The time step used in the simulations was 0.027 for lower
values of r and 0.00027 for r>0.8 (7 was the period of ac
force). The force was varied with the step 10~* (10~ or 107
is used for the studies of very small subharmonic steps) and
a time interval of 1007 was used as a relaxation time to allow
the system to reach the steady state. The response function

o(F), in particular the appearance and amplitude dependence
of the steps are analyzed for the different frequencies and
shapes of the substrate potential.
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FIG. 2. Average velocity as a function of the average driving force for w:%, K=4, F,.=0.2, vp=0.2, and different values of the shape

parameter r=0 and 0.2.

III. RESULTS

When potential gets deformed, very large subharmonic
steps appear on the response function #(F). In Fig. 2, the

response function o(F) for the commensurate structure
:% is presented for two different values of the shape param-
eter r.

When r=0, for the standard case with sinusoidal potential
in Fig. 2(a), the response function is characterized by the
appearance of large harmonic steps. Beside the harmonic
steps, in the commensurate structure w=% subharmonic
mode-locking also appears, however, the size of steps is
so small that it is invisible in the Fig. 2(a). In Fig. 2(b),
enlarged curve from Fig. 2(a) is presented, where the subhar-
monic step U =%Vﬂn (the step width AF=0.000 72) can be
seen. Contrary to the standard case, with the deformation of
the potential very large half-integer and higher-order subhar-
monic steps appear as we can see in Fig. 2(c). In Fig. 2(d),
the same step 17:%,120 as in Fig. 2(b) is shown for r=0.2. The
difference in size is obvious, for r=0.2, the step width (AF
=0.042) is significantly increased comparing with the case
for r=0.

The appearance of subharmonic steps and the changes of
critical depinning force due to deformation of the substrate
potential in deferent commensurate structures have been
studied in our previous work [18]. Origins of subharmonic
steps have been matter of many debates and are still not well
understood. What is shown by other studies [20-22] and also
our work indicates is that presence of many degrees of free-
dom in the system plays an important role in the appearance
of subharmonic mode-locking (the studies show that half-
integer and higher subharmonic steps have different origins).
It is well known that, standard FK model with winding num-

ber w=1 reduces to a single coordinate model, and as it was
proven, cannot exhibit subharmonic mode locking
[10,17,18]. However, if potential gets deformed, system can-
not be described by single coordinate or single particle
model since we have two groups of particles with different
dynamical properties. As it was shown, deformation causes
the appearance of whole series of large subharmonic steps,
where in the limit of very large shape parameter (when r
— 1), dynamical mode locking disappears while critical de-
pinning force F, diverges (for some value of system param-
eters, F. may even decrease at small values of r) [18]. In this
work, we will particularly focus on the stability and ampli-
tude dependence of the steps. Although amplitude and fre-
quency dependence have been studied in detail in the stan-
dard FK model in our previous works [13—16], all of these
studies have been dedicated only to the properties of har-
monic steps. Contrary to these previous studies, working in a
nonstandard FK model gives us a possibility to study not
only the interference phenomena in more realistic situations
but also to study the properties of subharmonic steps.

In Fig. 3, the width of the first harmonic (0 =%wv0) and
half-integer (0 =%wv0) steps as a function of the shape pa-
rameter is presented.

As shape parameter increases, the size of the first har-
monic step decreases reaching its minimum at r=0.25, after
which it increases again, and then after reaching maximum at
around r=0.65 decreases to zero as r— 1. Meanwhile, the
width of the half-integer step increases reaching its maxi-
mum at the same value of shape parameter r=0.25 that cor-
responds to the minimum of the harmonic step width (at this
point the harmonic and fractional step are almost of the same
size). These results show strong correlation between the
steps in which the larger is the size of half-integer step the
smaller that of harmonic step. We can also see in Fig. 3 that
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FIG. 3. The width AF of the first harmonic and fractional steps
U=wvy, and %an/o, respectively, as a function of the shape param-
eter r for w:%, K=4, F,.=0.2, and v(=0.2.

there is a second much smaller maximum of the half-integer
step width and the corresponding minimum of the harmonic
step width at r=0.6. The appearance of two maxima at the
curve for half integer, and the corresponding minima at the
curve for harmonic steps could be explained by the following
process: for the commensurate structure w=%, we have two
particles per one potential minima when r=0. As r increases
and potential is more and more deformed as can be seen in
Fig. 1, for values around r=0.25 in Fig. 3 that correspond to
the first pair of corresponding minimum and maximum, the
half of particles are still in sharp minima and the other half in
the wide minima. With the further increase in r, as the sharp
minima are getting more and more narrow in Fig. 1, for r
=0.6 that corresponds to the second pair of corresponding
minimum and maximum in Fig. 3, instead of two particles in
every minima, there will be one particle in sharp and tree in
wide minima. Finally, for very large deformations (r— 1),
the sharp minima practically disappear and all particles are
strongly pinned in wide minima, what results in the disap-
pearance of dynamical mode locking.

In Fig. 4, the amplitude dependence of the critical depin-
ning force and the first harmonic step width for different
values of the shape parameter is presented.

Changes of the amplitude dependence as r increases
are directly related to the appearance of large half-integer
steps. The appearance of large half-integer steps can be
seen in Fig. 5, where their width as a function of amplitude
for the same values of the shape parameter as in Fig. 4 is
shown.

As we can see the appearance of half-integer steps is cor-
related with minima and not with absolute value of critical
depinning force (presented by the dashed line).

Strong correlation between the harmonic and half-integer
steps can be also seen in Fig. 6 where amplitude dependence
of the first harmonic (0=ww,) and half-integer step (v
=%w1/0) for r=0.2 is shown.

The width of the half-integer step exhibits oscillations,
where the maxima correspond to the minima of the curve
for harmonic step. On the other side, the maxima of
harmonic step correspond to the zero minima of fractional
step since the harmonic steps always reach maximum values
at the points where subharmonic mode locking disappears,
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and there are only harmonic steps in the response function
o(F).

These results in Figs. 4 and 5 clearly show the impact that
deformation of the potential has on dynamical-mode-locking
phenomena. In the standard case for r=0, in the absence of
half-integer steps, the amplitude dependence in Fig. 4 is
characterized by the well-known Bessel-like form of oscilla-
tions. However, as r starts to increase and small half-integer
steps appear for r=0.05 in Fig. 5, this behavior will change.
The size of harmonic steps decreases while the minima be-
come rounded and never go completely to zero meanwhile,
the shape of oscillations still has the Bessel-like form. At r
=0.1, as half-integer steps increase in Fig. 5, new maxima
start to appear and the Bessel form of oscillations starts to
change in Fig. 4. At r=0.2, for large half-integer steps, the
width of harmonic step and the critical depinning force os-
cillate, however contrary to the standard case for r=0,
maxima of one curve corresponds to maxima of another,
while the form of oscillations became anomalous where the
second maxima is lower than the third one. With further
increase in r, at r=0.5 and 0.6, maxima of the oscillations are
significantly reduced while periodicity is changing.

The physical process that stays behind Bessel-like oscil-
lations of the step size with amplitude is the backward and
forward displacement of particles induced by the ac force.
Namely, in (dc+ac)-driven systems, dynamics is character-
ized by combination of two types of motions: linear motion
in the direction of the dc force and the backward and forward
jumps due to the ac force. Therefore, the particles perform
motion that consists of series of backward and forward
jumps, where the ac amplitude determines how much this
motion is retarded [2]. In Fig. 7, the motion of one particle
during one period of the ac force is presented.

If we consider a particle at the site i, then during one
period, particle will first jump n sites backward, reach the i
—n site, and then hop again n+1 sites forward to the site i
+1. During next period, it will repeat again these back and
forward jumps and move to the site i+2. In that way, by
repeating these back and forward jumps with every period of
the ac force it will move. The distance (the number of sites
n) over which particles moves is determined by the ampli-
tude of the ac force [2]. For the values of the ac amplitude
that correspond to the first maximum (in Fig. 4 for r=0),
particles will spend most of the time on the site and then hop
to the next well, while for the values at the second maxi-
mum, particles will jump one site back and two forward. As
the ac amplitude increases, particles will hop between wells
that are more and more distant while spending less time on
the sites, and consequently, the step width will decrease.

Deformation of the potential will affect this backward and
forward motion and by that the amplitude dependence of the
step width and critical depinning force. Due to asymmetry of
the potential, there are now two groups of particles and two
different types of wells in which they can move. For the
value of F,. that corresponds to the first maximum, particles
just jump to the next site where those from the wide jump to
the sharp minima and vice versa. For the value of F,. that
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FIG. 4. The width AF of the first harmonic step and the critical depinning force F. as a function of the ac amplitude for w=1, K=4,

19=0.2, and r=0, 0.05, 0.1, 0.2, 0.5, and 0.6.

corresponds to the second and all even maxima, particles
jump backward to the different type of minima what means
that particles from sharp minima will jump back to the wide
minima and from there forward to the wide minima at the
site i+ 1. However, for the value of F,. that correspond to the
third and other odd maxima in Fig. 4, particle at site i will
move backward to the same type of minima and from there
forward to the different type of minima at the site i+1 what
means particles from sharp minima will jump backward to
the sharp minima again and from there forward to wide
minima. Due to different pinning, the type of minima (sharp
or wide) between which particle jumps will affect its motion

2

and therefore the step size and the maxima of the oscilla-
tions.

Another effect that will also affect this backforward mo-
tion and therefore amplitude dependence is the changing of
the number of particles in potential wells. As we already
mentioned, for the commensurate structure w=%, we have
two particles per one potential minima, that are all equivalent
when r=0 for sinusoidal potential in Fig. 1(a). As r starts to
increase, and the sharp minima are getting more and more
narrow in Figs. 1(b)-1(d), the number of particles will
change from two particles per minima for small values of r
over one particle in sharp and three in wide minima to
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strongly pinned four particles in wide minima when r— 1.

Besides the amplitude dependence, in Figs. 4 and 5, we
can also see that the dynamical dc threshold (critical depin-
ning force for dc driven system, in the absence of ac force
when F,.=0) increases with the deformation of the potential.
In Fig. 8, the increase in dynamical dc threshold F ., with the
deformation of the potential is presented.

In the limit r— 1, dynamical dc threshold diverges.

During our simulations we have noticed that subharmonic
steps are much bigger if the frequency of applied ac force
increases. In Fig. 9, subharmonic Shapiro steps for two dif-
ferent value of frequencies are presented.

We can clearly see the significant increase in the step
number and size with the increase in frequency. This result is
particularly important since frequency dependence of the
Shapiro steps has been matter of many controversies. Ac-
cording to single coordinate models, step should be fre-
quency independent at the high frequencies, meanwhile in
systems with many degrees of freedom they show strong
dependence of frequency where even oscillatory behavior
appears in the high amplitude limit [13—-16]. Our previous
works in the standard FK model have shown that amplitude
and frequency (period) of the ac force play analog role in the
dynamical-mode-locking phenomena what raises the ques-
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FIG. 6. The step widths AF of the first harmonic and the half-
integer steps as a function of the ac amplitude F,,. for wzé, K=4,
19=0.2, and r=0.2.

tion whether it is particularity of the standard FK model and
harmonic Shapiro steps or it would appear also in models
where subharmonic steps are present. Detail studies of the
frequency dependence of subharmonic steps will be pub-
lished separately.

The amplitude dependence of the harmonic, half-integer,
and subharmonic steps obtained for 1y=0.5 is shown in Fig.
10 (Eziwvo, where i=1 and m=1 for harmonic, m=2 for
half-integer, and m=3, 4, and 5 for subharmonic steps).

Contrary to the case at lower frequency in Fig. 4, at the
higher frequency in Fig. 10(a), the size of maxima is in-
creased where the shape of oscillations for the half-integer
step better agrees with the Bessel function. These results, as
the results in Figs. 4—6, show the strong correlation among
the steps. We have been studied also the other commensurate
structures (w=1), and we have always observed the same
behavior.

Amplitude dependence and deviation from the Bessel-like
behavior have been subject of many theoretical and experi-
mental studies in charge density wave systems [23,24] and
systems of Josephson junction arrays [25-27]. It was already
suspected that a different choice of potential might distort
somewhat the amplitude dependence of the Shapiro steps
[24]. Fractional and integer Shapiro steps were found to be

FIG. 7. The motion of a particle in sinusoidal substrate potential
during one period of the ac force, where n=0,1,2,... is the number
of sites over which the particle moves.
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FIG. 8. Dynamical dc threshold F., as a function of the shape
parameter r for w:% and K=4.

correlated in which, the larger width of fractional steps, the
smaller that of integer steps [25,27]. Harmonic and half-
integer steps have been measured as a function of microwave
amplitude and magnetic field in the high-7,. grain-boundary
junctions, where, as in our case, appearance of half-integer
steps at the minima of critical current (F, in our model) has
been observed and the amplitude dependence of steps has
been classified into three different types (the behavior for the
smallest, intermediate, and large half-integer step widths)
[25]. In our examination of amplitude dependence, we have
classified the same types of behavior, where this classifica-
tion and comparison with these experiments [25] have been
presented in our previous work [28], and therefore, they will
not be repeated in this work. Anomalous amplitude depen-
dence as in Figs. 4-6 for r=0.2, has been observed in the
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FIG. 9. Average velocity as a function of the average driving
force for wzé, K=4, F,.=0.2, r=0.2, and two different values of
the frequency v5=0.2 and 0.5.

036604-7



JASMINA TEKIC AND BAMBI HU

—a— 1 |

o015l --0--1/2]
" --0--1/4 1

—Aa—1/5 4

o 14
0.015 —A— 15
L |
<
0.010 [ h
0.005:- \ "

../- RQ. / ] \ /"'\_
,\‘iu‘“ QAM Y ﬁ@mﬁm@;ﬂ};

F'IO 12 14 16 18 20

ac

FIG. 10. (a) The width AF of the first harmonic, half—integer and
subharmonic steps as a function of the ac amplitude for w—z, K
=4, v3=0.5, and r=0.2. The numbers f mark the curves. (b) En-
larged curves for subharmonic steps 3 3 1 and <

two-dimensional Josephson-junction arrays where deviation
from the Bessel-like behavior and reduction in second lobe is
result of field-induced vortex super lattice and broken sym-
metry, and it cannot be obtained in single-junction case [25].
Since we have studied only one particular model, in order to
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get complete answer about behavior of Shapiro steps in re-
alistic systems, other types of substrate potential have to be
studied. These problems will be the subject of our future
examinations.

IV. CONCLUSION

In this paper we have presented a detail study of the prop-
erties of Shapiro steps in the Frenkel-Kontorova model with
deformable substrate potential. The obtained results have
shown that deformation of the potential has strong influence
on dynamical-mode-locking phenomena causing the appear-
ance of large subharmonic steps and changing of stability
and properties of harmonic steps. Harmonic and half-integer
steps were found to be correlated in which, the larger width
of half-integer steps, the smaller that of harmonic steps. In
the amplitude dependence of harmonic steps, deformation
and appearance of large half-integer steps will cause devia-
tion from the Bessel like behavior to the oscillatory depen-
dence where the second (even maxima) are lower than the
third (odd) maxima. Strong influence of frequency on sub-
harmonic steps has been observed where their number and
size significantly increase at larger frequencies.

Presented results could be important for many areas of
science such as studies of charge- or spin-density waves sys-
tems and Josephson-junction arrays that are motivated by
fabrication of synchronization and superconducting devices.
These models are closely related to the dissipative dynamics
of the FK model [1,10]. Any application of interference phe-
nomena and building of Shapiro step devices require a theo-
retical guideline for the observation of Shapiro steps. Our
studies of interference effects in realistic models, and the
analysis of the physical processes behind observed phenom-
ena could bring an insight into the theory of Shapiro steps
and contribute to the understanding of their behavior in real
systems what is crucial for any technical application.
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